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Abstract  

A Radio Mean D-distance labeling  of a connected graph G is an injective map f from the vertex 

set V(G) to ℕ such that  for two distinct vertices u and v of G, d
D
(u, v) +  

𝑓 𝑢 +𝑓(𝑣)

2
  ≥  1 + 

diam
D
(G), where d

D
(u, v) denotes the D-distance between u and v and diam

D
(G) denotes the D-

diameter of G. The radio mean D-distance number of f, rmn
D
(f) is the maximum label assigned 

to any vertex of G. The radio mean D-distance number of G, rmn
D
(G) is the minimum value of 

rmn
D
(f) taken over all radio mean D-distance  labeling f of G. In this paper we find the radio 

mean D-distance number of some well known graphs. 
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Introduction 

By a graph G = (V, E) we mean a finite undirected graph without loops or multiple edges. The 

order and size of G are denoted by p and q respectively. 

 

Let G be a connected graph of diameter d and let k an integer such that 1 ≤ k ≤ d. A radio k-

coloring of G is an assignment f of colors (positive integers) to the vertices of G such that d(u, v) 

+ |f(u) − f(v)| ≥1 + k for every two distinct vertices u, v of G. The radio k-coloring number rck(f) 

of a radio k-coloring f of G is the maximum color assigned to a vertex of G. The radio k-

chromatic number rck(G) is min{rck(f)} over all radio k-colorings f of G. A radio k-coloring f of 

G is a minimum radio k-coloring if rck(f) = rck(G). A set S of positive integers is a radio k-

coloring set if the elements of S are used in a radio k-coloring of some graph G and S is a 

minimum radio k-coloring set if S is a radio k-coloring set of a minimum radio k-coloring of 

some graph G. The radio 1-chromatic number rc1(G) is then the chromatic number χ(G). When k 

= Diam(G), the resulting radio k-coloring is called radio coloring of G. The radio number of G is 

defined as the minimum span of a radio coloring of G and is denoted as rn(G).  

 

Radio labeling (multi-level distance labeling) can be regarded as an extension of distance-two 

labeling which is motivated by the channel assignment problem introduced by Hale [6]. 

Chartrand et al. [2] introduced the concept of radio labeling of graph. Chartrand et al. [3] gave 

the upper bound for the radio number of Path. The exact value for the radio number of Path and 

Cycle was given by Liu and Zhu [10]. However Chartrand et al. [2] obtained different values 

than Liu and Zhu [10]. They found the lower and upper bound for the radio number of Cycle. Liu 

[9] gave the lower bound for the radio number of Tree. The exact value for the radio number of 

Hypercube was given by R. Khennoufa and O.Togni [8]. M.M.Rivera et al. [20] gave the radio 

number of Cn× Cn,  the cartesian product of Cn. In [4] C.Fernandez et al. found the radio number 

for complete graph, star graph, complete bipartite graph, wheel graph and gear graph. 

M.T.Rahim and I.Tomescu [16] investigated the radio number of Helm Graph. The radio number 

for the generalized prism graphs were presented by Paul Martinez et.al. in [11]. 

 

The concept of  D-distance was introduced by D. Reddy Babu et al. [17, 18, 19].If u, v are 

vertices of a connected graph G, the D-length of a connected u-v path s is defined asℓ
D s  = ℓ(s) 
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+ deg(v) + deg(u) + deg(𝑤) where the sum runs over all intermediate vertices w of s and ℓ(s) is 

the length of the path. The D-distance, d
D
(u, v) between two vertices  u, v of a connected graph 

G is defined a  d
D
(u, v) = min  ℓD(s) where the minimum is taken over all u-v paths s in G. In 

other words, d
D
(u, v) = min ℓ(s) +  deg(v)  +  deg(u)  +  deg(𝑤) where the sum runs over 

all intermediate vertices w in s and minimum is taken over all u-v paths s in G. 

 

In [12], we introduced the concept of Radio D-distance. The radio D-distance coloring is a 

function f : V(G) → ℕ ∪{0} such that d
D
(u, v)  +  𝑓 𝑢 − 𝑓(𝑣)  ≥  diam

D
(G)  + 1. It is denoted 

by rn
D
(G). A radio D-distance coloring𝑓of G is a minimum radio D-distance coloring if rn

D
(𝑓) = 

rn
D
(G), where rn

D
(G) is called radio D-distance number. 

Radio mean labeling was introduced by R. Ponraj et al [13,14,15]. A radio mean labeling is a one 

to one mapping 𝑓from V(G) to ℕ satisfying the condition 

d(u, v) +  
𝑓 𝑢 +𝑓(𝑣)

2
  ≥  1 + diam(G).                                              (1.1) 

for every u, v ∈V(G). The span of a labeling 𝑓 is the maximum integer that f maps to a vertex of 

G. The radio mean number of G, rmn(G) is the lowest span taken over all radio mean labelings 

of the graph G. The condition (1.1) is called radio mean condition.  

In this paper, we introduce the concept of radio mean D-distance number. A radio mean D-

distance labeling is a one to one mapping 𝑓from V(G) to ℕ satisfying the condition 

d
D
(u, v) +  

𝑓 𝑢 +𝑓(𝑣)

2
  ≥  1 + diam

D
(G).                                             (1.2) 

for every u, v ∈V(G). The span of a labeling 𝑓 is the maximum integer that 𝑓 maps to a vertex of 

G. The radio mean D-distance number of G, rmn
D
(G) is the lowest span taken over all radio 

mean D-distance  labelings of the graph G. The condition (1.2) is called radio mean D-distance 

condition. In this paper we determine the radio mean D-distance number of some well-known 

graphs. The function f:V(G) → ℕ always represents injective map unless otherwise stated. 

 

2 . Main Result 

Theorem 2.1. 

The radio mean D-distance number of a complete graph, rmn
D
(Kn)   =  n. 
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Proof . 

Since diam
D
(G) =  d

D
(u, v) for any u, v ∈V(Kn) the condition (1.2) implies       

𝑓 𝑢 +𝑓(𝑣)

2
  ≥  1 for 

all u, v ∈ V(Kn). Since f is injective it follows that rmn
D
(Kn) ≤  n. Since  𝑉  = n, rmn

D
(Kn) ≥  n. 

Hence the result. 

       

Theorem 2.2. 

The radio mean D-distance number of a complete bipartite graph 

rmn
D
(Km,n)   ≤  

 
 

 3  
𝑚

2
 + 2𝑛 − 1 𝑖𝑓  𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑚 ≥ 2, 𝑛 ≥ 2.

    3  
𝑚−1

2
 + 2𝑛 − 1 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑚 ≥ 3, 𝑛 ≥ 3.

  

 

Proof . 

  Since n ≥ m, n + 2m + 2 ≤  m + 2n + 2 which implies diam
D
(Km,n) = 𝑚 + 2 𝑛 + 1 . Let {v1, v2, 

v3, …,vm}and {u1, u2, u3, …, un} are the partite sets. We shall check the radio mean D-distance 

condition d
D
(u, v) +  

𝑓 𝑢 +𝑓(𝑣)

2
  ≥  diam

D
(G)  + 1 = m + 2n + 3,  

for every pair of vertices (u, v) where u ≠ v. 

 

Case 1. m( ≥ 2) is even and n ≥ 2. 

Define the function 𝑓as f(vi) =  
𝑚

2
  + n + i –1, 1≤  i≤  m, f(ui) = 3  

𝑚

2
  + n + i –1, 1 ≤i ≤ n. 

 For (vi,uj), d
D
(vi, uj) + 

𝑓 𝑣𝑖 +𝑓(𝑢𝑗 )

2
  ≥ m + n+1 + 

 
𝑚

2
  + n + i – 1+3 

𝑚

2
  + n + j – 1

2
  ≥  m +2n +3. 

For (vi,vj),d
D
(vi, vj) + 

𝑓 𝑣𝑖 +𝑓(𝑣𝑗 )

2
  ≥ m+2n +2 + 

 
𝑚

2
  + n + i – 1+ 

𝑚

2
  + n + j – 1

2
  ≥  m +2n + 3. 

And for(ui,uj), 

d
D
(ui, uj) + 

𝑓 𝑢𝑖 +𝑓(𝑢𝑗 )

2
  ≥ 2m +n +2+ 

3 
𝑚

2
  + n + i – 1+3 

𝑚

2
  + n + j – 1

2
    ≥   m + 2n +3. 

Therefore, f(un) = 3  
𝑚

2
 + 2𝑛 − 1is the largest label. 
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Case 2. m( ≥ 3) is odd and n ≥ 2. 

Define the function 𝑓as f(vi) = 
𝑚−1

2
 + (n –1) + i –1, 1 ≤ i ≤ m and 

f(ui) = 3  
𝑚−1

2
 + (n –1)+ i, 1 ≤  i ≤  n. For (vi,uj), 

d
D
(vi, uj)+ 

𝑓 𝑣𝑖 +𝑓(𝑢𝑗 )

2
  ≥  m + n + 1+ 

 
𝑚−1

2
 +  n−1 + i−1+3 

𝑚−1

2
 + (n – 1) +  j

2
  ≥ m+ n+3. 

For ( vi,vj) 

d
D
(vi, vj) + 

𝑓 𝑣𝑖 +𝑓(𝑣𝑗 )

2
  ≥  m + 2n + 2 + 

 
𝑚−1

2
 + (n – 1) + i – 1+  

𝑚−1

2
 + (n – 1) + j – 1

2
 ≥ m +2n + 3. 

And for (ui,uj), 

d
D
(ui, uj)  + 

𝑓 𝑢𝑖 +𝑓(𝑢𝑗 )

2
  ≥   2m + n + 2 + 

3 
𝑚−1

2
 + (n – 1) +  i+3 

𝑚−1

2
 + (n – 1) +  j

2
 ≥   m + 2n +3. 

Therefore, f(un) =3  
𝑚−1

2
 + 2 𝑛 − 1 + 1 is the largest label. 

Hence, rmn
D
(Km,n)   ≤ 

 
 

 3  
𝑚

2
 + 2𝑛 − 1 𝑖𝑓  𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑚 ≥ 2, 𝑛 ≥ 2.

    3  
𝑚−1

2
 + 2 𝑛 − 1 + 1 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 𝑚 ≥ 3, 𝑛 ≥ 3.

  

 

Note. When m = n,  rmn
D
(Km,n)   ≤  

 
 

 7  
𝑚

2
 − 1 𝑖𝑓 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛 

7  
𝑚−1

2
 + 1 𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑 

  

Theorem 2.3. 

The radio mean D-distance number of a path, rmn
D
(Pn)   ≤    

2, 𝑛 = 2.

4(𝑛 − 2), 𝑛 ≥ 3.

  

Proof . 

It is obvious that diam
D
(Pn) = 3(n – 1). Let  V(Pn) = { v1, v2, v3, …, vn}. Define the function 𝑓as 

f(v1) = 3n – 7, f(v2) = 3n, f(v3) = 3n + 1,f(vi+3) =3n +  i – 5, 1≤  i ≤  n – 3. We shall check the 

radio mean D-distance condition d
D
(u, v) +  

𝑓 𝑢 +𝑓(𝑣)

2
  ≥ diam

D
(G) +1= 3n – 2 for every pair of 

vertices (u, v) where u ≠ v. 
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Case 1.vi and vj where  𝑖 − 𝑗  = 1. 

Subcase1. Without loss of generality suppose i = 1. 

Then d
D
(vi, vj)  + 

𝑓 𝑣𝑖 +𝑓(𝑣𝑗 )

2
  ≥    4 + 

3𝑛−7+3𝑛+1

2
    ≥  3n – 2. 

If both vi and vj are intermediate adjacent vertices, then  

d
D
(vi, vj)  + 

𝑓 𝑣𝑖 +𝑓(𝑣𝑗 )

2
  ≥ 5 + 

3𝑛+𝑖−5+3𝑛+𝑗−5

2
    ≥  3n – 2. 

Case 2.vi and vj where  𝑖 − 𝑗 > 1.If both vi and vj are end vertices, 

Then d
D
(vi, vj)  + 

𝑓 𝑣𝑖 +𝑓(𝑣𝑗 )

2
  ≥   3n –3   + 

3𝑛−7+3𝑛+𝑖−5

2
    ≥  3n – 2. 

If either vi or vj (not both) is an end vertex, then 

d
D
(vi, vj)  + 

𝑓 𝑣𝑖 +𝑓(𝑣𝑗 )

2
 ≥   3n – 5   + 

3𝑛−7+3𝑛+𝑗−5

2
    ≥  3n – 2. 

If both vi and vj are intermediate vertices, then 

d
D
(vi, vj)  + 

𝑓 𝑣𝑖 +𝑓(𝑣𝑗 )

2
  ≥   3n – 7   + 

3𝑛+𝑖−5+3𝑛+𝑗−5

2
    ≥  3n – 2. 

Therefore, f(vn) = 4(n – 2) is the largest label.  

Hence, rmn
D
(Pn)   ≤    

2, 𝑛 = 2.

4(𝑛 − 2), 𝑛 ≥ 3.

  

 

Theorem 2.4. 

The radio mean D-distance number of a star, rmn
D
(K1,n)   ≤   

 
 
 

 
 

2, 𝑛 = 1.

4, 𝑛 = 2.

𝑛 + 1, 𝑛 ≥ 3.

  

Proof . 

It is obvious that diam
D
(K1,n) =  n + 4. Let V(K1,n) = {v0, v1, v2, v3, …, vn}, where v0 is the 

central vertex. Define the function 𝑓as f(v0) = n + 1, f(vi) = i, 1 ≤  i ≤  n. We shall check the radio 

mean D-distance condition d
D
(u, v) +  

𝑓 𝑢 +𝑓(𝑣)

2
  ≥  diam

D
(G) + 1 =  n + 5 for every pair of 

vertices (u, v) where u ≠ v. 

For (v0,vi), i = 1, 2, 3, . . . , n, 

d
D
(v0, vi)  + 

𝑓 𝑣0 +𝑓(𝑣𝑖)

2
  ≥   n + 2 + 

𝑛+1+𝑖

2
    ≥  n + 5. 

For any pair(vi,vj), 
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d
D
(vi, vj)  + 

𝑓 𝑣𝑖 +𝑓(𝑣𝑗 )

2
  ≥   n + 4  + 

𝑖 +𝑗

2
  ≥  n + 5. 

Therefore, f(v0) = n + 1 is the largest label, 

Hence, rmn
D
(K1,n)   ≤   

 
 
 

 
 

2, 𝑛 = 1.

4, 𝑛 = 2.

𝑛 + 1, 𝑛 ≥ 3.

  

The subdivision of a star K1, n  denoted by S(K1, n ) is the graph obtained from K1, n  by inserting  a 

vertex an each edge of K1, n  . 

 

Theorem 2.5. The radio mean D-distance number of a subdivision of a star,                                            

rmn
D
S(K1, n )   ≤ 

4, 𝑛 = 1.

2(𝑛 + 3), 𝑛 ≥ 2.

  

Proof . 

It is obvious that diam
D
S(K1, n) = n +10. Let V(S(K1, n))= {v0} ∪ {vi,ui/ i =1, 2,  . . . , n} and E = 

{v0vi, viui / i = 1, 2, 3, . . . , n}. Define the function 𝑓as f(v0) = 6, f(ui) = n + 7 – i,  

1 ≤  i ≤  n, f(vi) =  n + 6 + i, 1 ≤  i ≤  n. We shall check the radio mean D-distance condition 

d
D
(u, v) +  

𝑓 𝑢 +𝑓(𝑣)

2
  ≥ diam

D
(G) +1 =   n + 11, for every pair of vertices (u, v) where u ≠ v. 

 For (v0, ui), d
D
(v0, ui)  + 

𝑓 𝑣0 +𝑓(𝑢𝑖)

2
  ≥   n + 5 + 

6+𝑛+7−𝑖

2
 ≥  n + 11. 

For (v0, vi), d
D
(v0, vi)  + 

𝑓 𝑣0 +𝑓(𝑣𝑖)

2
  ≥   n + 3 + 

6+𝑛+6+𝑖

2
 ≥  n + 11. 

For any pair (vi, vj), d
D
(vi, vj)  + 

𝑓 𝑣𝑖 +𝑓(𝑣𝑗 )

2
  ≥   n + 6 + 

𝑛+6+𝑖+𝑛+6+𝑗

2
 ≥  n + 11. 

For any pair (ui, uj), 

d
D
(ui, uj) + 

𝑓 𝑢𝑖 +𝑓(𝑢𝑗 )

2
  ≥ n + 10+ 

𝑛+7−𝑖+𝑛+7−𝑗

2
    ≥  n + 11. 

For ui and vj where  𝑖 − 𝑗 = 1, d
D
(ui, vj) + 

𝑓 𝑢𝑖 +𝑓(𝑣𝑗 )

2
  ≥ 4+ 

𝑛+7−𝑖+𝑛+6+𝑖

2
  ≥  n + 11. 

For ui and vj where  𝑖 − 𝑗 > 1, d
D
(ui, vj) + 

𝑓 𝑢𝑖 +𝑓(𝑣𝑗 )

2
  ≥ n + 8 + 

𝑛+7−𝑖+𝑛+6+𝑗

2
 ≥  n + 11. 

Therefore, f(vn) =  2(n + 3) is the largest label. 

Hence, rmn
D
S(K1, n)   ≤   

4, 𝑛 = 1.

2(𝑛 + 3), 𝑛 ≥ 2.
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